Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(5): 1935-1941, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38226850

RESUMO

Metal-linker bonds serve as the "glue" that binds metal ions to multitopic organic ligands in the porous materials known as metal-organic frameworks (MOFs). Despite ample evidence of bond lability in molecular and polymeric coordination compounds, the metal-linker bonds of MOFs were long assumed to be rigid and static. Given the importance of ligand fields in determining the behaviour of metal species, labile bonding in MOFs would help explain outstanding questions about MOF behaviour, while providing a design tool for controlling dynamic and stimuli-responsive optoelectronic, magnetic, catalytic, and mechanical phenomena. Here, we present emerging evidence that MOF metal-linker bonds exist in dynamic equilibria between weakly and tightly bond conformations, and that these equilibria respond to guest-host chemistry, drive phase change behavior, and exhibit size-dependence in MOF nanoparticles.

2.
Inorg Chem ; 62(51): 20929-20939, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38048322

RESUMO

We report the discovery and characterization of two porous Ce(III)-based metal-organic frameworks (MOFs) with the V-shaped linker molecules 4,4'-sulfonyldibenzoate (SDB2-) and 4,4'-(hexafluoroisopropylidene)bis(benzoate) (hfipbb2-). The compounds of framework composition [Ce2(H2O)(SDB)3] (1) and [Ce2(hfipbb)3] (2) were obtained by using a synthetic approach in acetonitrile that we recently established. Structure determination of 1 was accomplished from 3D electron diffraction (3D ED) data, while 2 could be refined against powder X-ray diffraction (PXRD) data using the crystal structure of an isostructural La-MOF as the starting model. Their framework structures consist of chain-like inorganic building units (IBUs) or hybrid-BUs that are interconnected by the V-shaped linker molecules to form framework structures with channel-type pores. The composition of both compounds was confirmed by PXRD, elemental analysis, as well as NMR and IR spectroscopy. Interestingly, despite the use of (NH4)2[CeIV(NO3)6] in the synthesis, cerium ions in both MOFs occur exclusively in the + III oxidation state as determined by X-ray absorption near edge structure (XANES) and X-ray photoelectron spectroscopy (XPS). Thermal analyses reveal remarkably high thermal stabilities of ≥400 °C for the MOFs. Initial N2 sorption measurements revealed the peculiar sorption behavior of 2 which prompted a deeper investigation by Ar and CO2 sorption experiments. The combination with nonlocal density functional theory (NL-DFT) calculations adds to the understanding of the nature of the different pore diameters in 2. An extensive quasi-simultaneous in situ XANES/XRD investigation was carried out to unveil the formation of Ce-MOFs during the solvothermal syntheses in acetonitrile. The crystallization of the two Ce(III)-MOFs presented herein as well as two previously reported Ce(IV)-MOFs, all obtained by a similar synthetic approach, were studied. While the XRD patterns show time-dependent MOF crystallization, the XANES data reveal the presence of Ce(III) intermediates and their subsequent conversion to the MOFs. The addition of acetic acid in combination with the V-shaped linker molecule was identified as the crucial factor for the formation of the crystalline Ce(III/IV)-MOFs.

3.
Inorg Chem ; 62(13): 5176-5185, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36960951

RESUMO

The use of the V-shaped linker molecules 4,4'-oxydibenzoic acid (H2ODB) and 4,4'-carbonyldibenzoic acid (H2CDB) led to the discovery of two isoreticular Ce(IV)-based metal-organic frameworks (MOFs) of composition [CeO(H2O)(L)], L = ODB2-, CDB2-, denoted CAU-58 (CAU = Christian-Albrechts-University). The recently developed Ce-MOF synthesis approach in acetonitrile as the solvent proved effective in accessing Ce(IV)-MOF structures with infinite rod-shaped inorganic building units (IBUs) and circumventing the formation of the predominantly observed hexanuclear [Ce6O8] cluster. For the structure determination of the isoreticular MOFs, three-dimensional electron diffraction (3D ED) and powder X-ray diffraction (PXRD) data were used in combination with density functional theory (DFT) calculations. [CeO(H2O)(CDB)] shows reversible H2O adsorption by stirring in water and thermal treatment at 190 °C, which leads to a unit cell volume change of 11%. The MOFs feature high thermal stabilities (T > 290 °C), which exceed those of most Ce(IV)-MOFs and can be attributed to the infinite rod-shaped IBU. Surface and bulk oxidation states of the cerium ions were analyzed via X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge spectroscopy (XANES). While Ce(III) ions are observed by the highly surface-sensitive XPS method, the bulk material contains predominantly Ce(IV) ions according to XANES. Application of the MOFs as catalysts for the catalytic degradation of methyl orange in aqueous solutions was also studied. While degradation activity for both MOFs was observed, only CAU-58-ODB revealed enhanced photocatalytic activity under ultraviolet (UV) light. The photocatalytic mechanism likely involves a ligand-to-metal charge transfer (LMCT) from the linkers to the Ce(IV) centers. Analyses by XANES and inductively coupled plasma-optical emission spectroscopy (ICP-OES) demonstrate that leaching of Cerium ions as well as partial reduction of Ce(IV) to Ce(III) takes place during catalysis. At the same time, PXRD data confirm the structural stability of the remaining MOF catalysts.

4.
Dalton Trans ; 51(46): 17543-17546, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36394471

RESUMO

A straightforward method for the synthesis of a two-dimensional (2D) new copper(I) coordination polymer, namely Cu(bzpdc), containing the ligand benzophenone 4,4'-dicarboxylate, and its effective use as catalyst for the azide-alkyne click chemistry at room temperature is reported. Zig-zag formation caused by cuprophilic interactions resulted in an unprecedented crystal structure with a very high copper content (45.5% by weight). The catalyst was stable up until 300 °C and tolerant to various solvents, including water. Cu(bzpdc) showed excellent catalytic activity for click reactions of several organic azides and alkynes having different functional groups at room temperature and is comparable to its homogenous analogues. The recyclability of Cu(bzpdc) was also tested and proven to be effective.

5.
Dalton Trans ; 51(37): 14221-14227, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36063002

RESUMO

The effect of solvent has been investigated for the synthesis of bismuth gallate compounds, of which the water-based bismuth subgallate has been used as an active pharmaceutical ingredient (API) for over a century. Using methanol as a solvent, two new bismuth gallates were acquired: first a flexible 3-periodic metal-organic framework (MOF) forms, which transforms upon extended synthesis times into a layered 2-periodic coordination polymer of the same bismuth-to-gallate ratio. The structures were determined by three-dimensional electron diffraction. Synthesis in ethanol resulted in the formation of the MOF phase, but not the layered phase. The layered material of the methanol-based synthesis was used as a Lewis acid catalyst due to its higher stability, showing a comparatively quick and regiospecific conversion of styrene oxide to 2-methoxy-2-phenylethanol, indicating the presence of open metal sites in the material. The acquisition of bismuth gallate structures of varying periodicity highlights the prospect of acquiring novel MOFs and coordination polymers from the same components of APIs.


Assuntos
Estruturas Metalorgânicas , Álcool Feniletílico , Bismuto/química , Ácidos de Lewis , Metanol , Preparações Farmacêuticas , Polímeros/química , Solventes , Água
6.
Chem Commun (Camb) ; 58(76): 10695-10698, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36069049

RESUMO

Bibrocathol is an active pharmaceutical ingredient that has been used to treat eyelid diseases for over a century, yet its structure has remained unknown. 3D electron diffraction on crystals from a commercial ointment revealed two structures. These results highlight the technique's potential in structure elucidation from microcrystalline mixtures.


Assuntos
Anti-Infecciosos Locais , Elétrons , Anti-Infecciosos Locais/farmacologia , Catecóis , Cristalografia/métodos , Cristalografia por Raios X , Pomadas
7.
Nat Commun ; 13(1): 1984, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35418171

RESUMO

Structure determination of pharmaceutical compounds is invaluable for drug development but remains challenging for those that form as small crystals with defects. Bismuth subsalicylate, among the most commercially significant bismuth compounds, is an active ingredient in over-the-counter medications such as Pepto-Bismol, used to treat dyspepsia and H. pylori infections. Despite its century-long history, the structure of bismuth subsalicylate is still under debate. Here we show that advanced electron microscopy techniques, namely three-dimensional electron diffraction and scanning transmission electron microscopy, can give insight into the structure of active pharmaceutical ingredients that are difficult to characterize using conventional methods due to their small size or intricate structural features. Hierarchical clustering analysis of three-dimensional electron diffraction data from ordered crystals of bismuth subsalicylate revealed a layered structure. A detailed investigation using high-resolution scanning transmission electron microscopy showed variations in the stacking of layers, the presence of which has likely hindered structure solution by other means. Together, these modern electron crystallography techniques provide a toolbox for structure determination of active pharmaceutical ingredients and drug discovery, demonstrated by this study of bismuth subsalicylate.


Assuntos
Infecções por Helicobacter , Compostos Organometálicos , Bismuto , Infecções por Helicobacter/tratamento farmacológico , Humanos , Preparações Farmacêuticas , Salicilatos
8.
J Am Chem Soc ; 144(13): 5910-5920, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35325542

RESUMO

Electron transport through metal-organic frameworks by a hopping mechanism between discrete redox active sites is coupled to diffusion-migration of charge-balancing counter cations. Experimentally determined apparent diffusion coefficients, Deapp, that characterize this form of charge transport thus contain contributions from both processes. While this is well established for MOFs, microscopic descriptions of this process are largely lacking. Herein, we systematically lay out different scenarios for cation-coupled electron transfer processes that are at the heart of charge diffusion through MOFs. Through systematic variations of solvents and electrolyte cations, it is shown that the Deapp for charge migration through a PIZOF-type MOF, Zr(dcphOH-NDI) that is composed of redox-active naphthalenediimide (NDI) linkers, spans over 2 orders of magnitude. More importantly, however, the microscopic mechanisms for cation-coupled electron propagation are contingent on differing factors depending on the size of the cation and its propensity to engage in ion pairs with reduced linkers, either non-specifically or in defined structural arrangements. Based on computations and in agreement with experimental results, we show that ion pairing generally has an adverse effect on cation transport, thereby slowing down charge transport. In Zr(dcphOH-NDI), however, specific cation-linker interactions can open pathways for concerted cation-coupled electron transfer processes that can outcompete limitations from reduced cation flux.


Assuntos
Estruturas Metalorgânicas , Cátions , Transporte de Elétrons , Elétrons , Estruturas Metalorgânicas/química , Oxirredução
9.
Commun Chem ; 5(1): 24, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36697798

RESUMO

Bioapplication is an emerging field of metal-organic frameworks (MOF) utilization, but biocompatible MOFs with permanent porosity are still a rarity in the field. In addition, biocompatibility of MOF constituents is often overlooked when designing bioMOF systems, intended for drug delivery. Herein, we present the a Zn(II) bioMOF based on vitamin C as an independent ligand (bioNICS-1) forming a three-dimensional chiral framework with permanent microporosity. Comprehensive study of structure stability in biorelavant media in static and dynamic conditions demonstrates relatively high structure resistivity, retaining a high degree of its parent specific surface area. Robustness of the 3D framework enables a slow degradation process, resulting in controllable release of bioactive components, as confirmed by kinetic studies. BioNICS-1 can thus be considered as a suitable candidate for the design of a small drug molecule delivery system, which was demonstrated by successful loading and release of urea-a model drug for topical application-within and from the MOF pores.

10.
Chemistry ; 27(28): 7696-7703, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33566437

RESUMO

The reaction of the V-shaped linker molecule 5-hydroxyisophthalic acid (H2 L0 ), with Al or Ga nitrate under almost identical reaction conditions leads to the nitration of the linker and subsequent formation of metal-organic frameworks (MOFs) with CAU-10 or MIL-53 type structure of composition [Al(OH)(L)], denoted as Al-CAU-10-L0, 2, 4, 6 or [Ga(OH)(L)], denoted as Ga-MIL-53-L2 . The Al-MOF contains the original linker L0 as well as three different nitration products (L2 , L4 and L4/6 ), whereas the Ga-MOF mainly incorporates the linker L2 . The compositions were deduced by 1 H NMR spectroscopy and confirmed by Rietveld refinement. In situ and ex situ studies were carried out to follow the nitration and crystallization, as well as the composition of the MOFs. The crystal structures were refined against powder X-ray diffraction (PXRD) data. As anticipated, the use of the V-shaped linker results in the formation of the CAU-10 type structure in the Al-MOF. Unexpectedly, the Ga-MOF crystallizes in a MIL-53 type structure, which is usually observed with linear or slightly bent linker molecules. To study the structure directing effect of the in situ nitrated linker, pure 2-nitrobenzene-1,3-dicarboxylic acid (m-H2 BDC-NO2 ) was employed which exclusively led to the formation of [Ga(OH)(C8 H3 NO6 )] (Ga-MIL-53-m-BDC-NO2 ), which is isoreticular to Ga-MIL-53-L2 . Density Functional Theory (DFT) calculations confirmed the higher stability of Ga-MIL-53-L2 compared to Ga-CAU-10-L2 and grand canonical Monte Carlo simulations (GCMC) are in agreement with the observed water adsorption isotherms of Ga-MIL-53-L2 .

11.
Inorg Chem ; 59(18): 13343-13352, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32869998

RESUMO

Following the strategy of installing porosity in coordination polymers predefined by linker geometry, we employed the new tetratopic linker molecule 1,1,2,2-tetrakis[4-phosphonophenyl]ethylene (H8TPPE) for the synthesis of new porous metal phosphonates. A high-throughput study was carried out using Ni2+ and Co2+ as metal ions, and a very strong influence of the reactor size on the product formation is observed while maintaining the same reaction parameters. Using small autoclaves (V = 250 µL), single crystals of isostructural mononuclear complexes of the composition [Ni(H3DPBP)2(H2O)4] (1) and [Co(H3DPBP)2(H2O)4] (2) are formed. They contain the linker molecule H4DPBP (4,4'-diphosphonobenzophenone), which is formed in situ by oxidation of H8TPPE. Using autoclaves with a volume of V = 2 mL, two new 3D metal-organic frameworks (MOFs) of composition [Ni2(H4TPPE)(H2O)6]·4H2O (CAU-46) and [Co2(H4TPPE)(H2O)4]·3H2O (CAU-47) were isolated in bulk quantities, and their crystal structures were determined from three-dimensional electron diffraction (3D ED) and powder X-ray diffraction data. Using even larger autoclaves (V = 30 mL), another 3D MOF of the composition [Co2(H4TPPE)]·6H2O (Co-CAU-48) was obtained, and a structure model was established via 3D ED measurements. Remarkably, the isostructural compound [Ni2(H4TPPE)]·9H2O (Ni-CAU-48) is only obtained indirectly, i.e., via thermal activation of CAU-46. As the chosen linker geometry leads to the formation of MOFs, topological analyses were carried out, highlighting the different connectivities observed in the three frameworks. Porosity of the compounds was proven via water sorption experiments, resulting in uptakes of 126 mg/g (CAU-46), 105 mg/g (CAU-47), 210 mg/g (Ni-CAU-48), and 109 mg/g (Co-CAU-48).

12.
J Am Chem Soc ; 142(29): 12743-12750, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32597187

RESUMO

A molecular crystal of a 2-D hydrogen-bonded organic framework (HOF) undergoes an unusual structural transformation after solvent removal from the crystal pores during activation. The conformationally flexible host molecule, ABTPA, adapts its molecular conformation during activation to initiate a framework expansion. The microcrystalline activated phase was characterized by three-dimensional electron diffraction (3D ED), which revealed that ABTPA uses out-of-plane anthracene units as adaptive structural anchors. These units change orientation to generate an expanded, lower density framework material in the activated structure. The porous HOF, ABTPA-2, has robust dynamic porosity (SABET = 1183 m2 g-1) and exhibits negative area thermal expansion. We use crystal structure prediction (CSP) to understand the underlying energetics behind the structural transformation and discuss the challenges facing CSP for such flexible molecules.

13.
Molecules ; 25(10)2020 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-32429506

RESUMO

During formation and cycling of nickel-metal hydride (NiMH cells), surface corrosion on the metal hydride particles forms a porous outer layer of needle-shaped rare-earth hydroxide crystals. Under this layer, a denser but thinner oxidized layer protects the inner metallic part of the MH electrode powder particles. Nano-sized nickel-containing clusters that are assumed to promote the charge and discharge reaction kinetics are also formed here. In this study, mechanical treatments are tested to recycle hydrogen storage alloys from spent NiMH batteries. This removes the outer corroded surface of the alloy particles, while maintaining the catalytic properties of the surface. Scanning electron microscopy images and powder X-ray diffraction measurements show that the corrosion layer can be partly removed by ball milling or sonication, combined with a simple washing procedure. The reconditioned alloy powders exhibit improved high rate properties and activate more quickly than the pristine alloy. This indicates that the protective interphase layer created on the alloy particle during their earlier cycling is rather stable. The larger active surface that is created by the mechanical impact on the surface by the treatments also improves the kinetic properties. Similarly, the mechanical strain during cycling cracks the alloy particles into finer fragments. However, some of these particles form agglomerates, reducing the accessibility for the electrolyte and rendering them inactive. The mechanical treatment also separates the agglomerates and thus further promotes reaction kinetics in the upcycled material. Altogether, this suggests that the MH electrode material can perform better in its second life in a new battery.


Assuntos
Ligas/química , Fontes de Energia Elétrica , Reutilização de Equipamento , Níquel/química , Eletrodos , Humanos , Teste de Materiais , Oxirredução , Reciclagem
14.
J Am Chem Soc ; 142(20): 9471-9481, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32312041

RESUMO

Nine metal-organic frameworks have been prepared with the hexagon-shaped linker 1,2,3,4,5,6-hexakis(4-carboxyphenyl)benzene (H6cpb) by solvothermal reactions in dimethylformamide (dmf) or dimethylacetamide (dmac) with acetic acid or formic acid as modulators: [Bi2(cpb)(acetato)2(dmf)2]·2dmf CTH-6 forms a rtl-net; 2(H2NMe2)[Cu2(cpb)] CTH-7 forms a kgd-net; [Fe4(cpb)(acetato)2(dmf)4] CTH-8 and [Co4(cpb)(acetato)2(dmf)4] CTH-9 are isostructural and form yav-nets; 2(HNEt3)[Fe2(cpb)] CTH-10 and the two polymorphs of 2(H2NMe2)[Zn2(cpb)]·1.5dmac, Zn-MOF-888 and CTH-11, show kgd-nets; [Cu2(cpb)(acetato)2(dmf)2]·2dmf, CTH-12, forms a mixed coordination and hydrogen-bonded sql-net; and 2(H2NMe2)[Zn2(cpb)] CTH-13, a similarly mixed yav-net. Surface area values (Brunauer-Emmett-Teller, BET) range from 34 m2 g-1 for CTH-12 to 303 m2 g-1 for CTH-9 for samples activated at 120 °C in dynamic vacuum. All compounds show normal (10-fold higher) molar CO2 versus N2 uptake at 298 K, except the 19-fold CO2 uptake for CTH-12 containing Cu(II) dinuclear paddle-wheels. We also show how perfect hexagons and triangles can combine to a new 3D topology laf, a model of which gave us the idea of foldable network topologies, as the laf-net can fold into a 2D form while retaining the local geometry around each vertex. Other foldable nets identified are cds, cds-a, ths, sqc163, clh, jem, and tfc covering the basic polygons and their combinations. The impact of this concept on "breathing" MOFs is discussed. I2 sorption, both from gas phase and from MeOH solution, into CTH-7 were studied by time of flight secondary ion mass spectrometry (ToF-SIMS) on dried crystals. I2 was shown to have penetrated the crystals, as layers were consecutively peeled off by the ion beam. We suggest ToF-SIMS to be a method for studying sorption depth profiles of MOFs.

15.
Dalton Trans ; 49(15): 4861-4868, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32219252

RESUMO

Metal-organic frameworks containing Ga3+ ions and four differently substituted naphthalenedicarboxylates (ndc2-) have been synthesized and characterized. The Ga3+ ions are six-fold coordinated by oxygen atoms in all title compounds, but two different inorganic building units, i.e. trans corner-sharing and cis,trans edge-sharing octahedra are observed. Crystal structures were validated by Rietveld refinements against powder X-ray diffraction data. [Ga(OH)(1,4-ndc)]·2H2O crystallizes in a non-breathing MIL-53 type structure with two different pore sizes (5.5 × 5.5 Å and 9 × 9 Å). It is non-porous with respect to nitrogen but has a water adsorption capacity of about 155 mg g-1 and a thermal stability of up to 240 °C. The dense compound [Ga(OH)(1,8-ndc)] crystallizes in a new layered structure motif, which is related to the crystal structure of MIL-122 ([Al(OH)((O2C)4C6H2)]). The third and fourth compounds [Ga2(OH)4(2,3-ndc)]·H2O and [Ga(OH)(2,6-ndc)]·H2O are isoreticular to CAU-15 ([Al2(OH)4(2,3-bdc)]·H2O) and MIL-69 ([Al(OH)(2,6-ndc)]·H2O), respectively. The last two compounds are non-porous toward nitrogen but reversible dehydration was demonstrated. For comparison, the two new compounds [Al(OH)(1,8-ndc)] and [Al2(OH)4(2,3-ndc)]·H2O, which are isostructural to the newly described gallium compounds, were also synthesized and fully characterized. The Al-containing coordination polymers exhibit higher temperature stabilities compared to their isostructural Ga compounds.

16.
Dalton Trans ; 49(8): 2724-2733, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32052807

RESUMO

The new linker molecule (H2O3PCH2)2N-CH2C6H4SO3H, (4-{[bis(phosphonomethyl)amino]methyl}benzene-sulfonic acid, H5L), bearing both phosphonic and sulfonic acid groups, was employed for the synthesis of new coordination polymers (CPs). Four new CPs of composition [Mg(H3L)(H2O)2]·H2O (1), [Mg2(HL)(H2O)6]·2H2O (2), [Ba(H3L)(H2O)]·H2O (3) and [Pb2(HL)]·H2O (4), were discovered using high-throughput methods and all structures were determined by single-crystal X-ray diffraction (SCXRD). With increasing ionic radius of the metal ion, an increase in coordination number from CN = 6 (Mg2+) to CN = 9 (Ba2+) and an increase in the dimensionality of the network from 1D to 3D is observed. This is reflected in the composition of the IBU and the number of metal ions that are connected by each linker molecule, i.e. from three in 1 to ten in 4. The connection of the IBUs leads to 1D and 2D structures in 1 and 2 with non-coordinating sulfonate groups, while 3 and 4 crystallise in MOF-type structures and coordination of the sulfonate groups is observed. The compounds exhibit thermal stabilities between 200 (2) and 345 °C (4) as proven by variable temperature powder X-ray diffraction (VT-PXRD) measurements. Title compound 4 contains micropores of 4 × 2 Å and reversible H2O uptake of 50 mg g-1 was demonstrated by vapour sorption measurements, making it the first porous metal phosphonatosulfonate. Detailed characterisation, i.e. CHNS and TG analysis as well as NMR and IR spectroscopy measurements confirm the phase purity of the title compounds.

17.
Org Lett ; 22(2): 417-421, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31895577

RESUMO

A palladium-catalyzed oxidative cascade carbonylative carbocyclization of enallenols was developed. Under mild reaction conditions, a range of cis-fused [5,5] bicyclic γ-lactones and γ-lactams with a 1,3-diene motif were obtained in good yields with high diastereoselectivity. The obtained lactone/lactam products are viable substrates for a stereoselective Diels-Alder reaction with N-phenylmaleimide, providing polycyclic compounds with increased molecular complexity.

18.
J Am Chem Soc ; 140(42): 13640-13643, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30351138

RESUMO

Multistimuli-responsive enaminitrile-based configurational switches displaying aggregation-induced emission (AIE), fluorescence turn-on effects, and supergelation properties are presented. The E-isomers dominated (>97%) in neutral/basic solution, and the structures underwent precisely controlled switching around the enamine C═C bond upon addition of acid/base. Specific fluorescence output was observed in response to different external input in the solution and solid states. In response to H+, configurational switching resulted in complete formation of the nonemissive Z-H+-isomers in solution, however displaying deep-blue to blue fluorescence (ΦF up to 0.41) in the solid state. In response to CuII in the solution state, the E-isomers exhibited intense, turn-on, blue-green fluorescence, which could be turned off by addition of competitive coordination. The acid/base-activated switching, together with the induced AIE-effects, further enabled the accomplishment of a responsive superorganogelator. In nonpolar solvents, a blue-fluorescent supramolecular gel was formed upon addition of acid to the E-isomer suspension. The gelation could be reversed by addition of base, and the overall, reversible process could be repeated at least five cycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...